876 research outputs found

    A Metric Encoding for Bounded Model Checking (extended version)

    Full text link
    In Bounded Model Checking both the system model and the checked property are translated into a Boolean formula to be analyzed by a SAT-solver. We introduce a new encoding technique which is particularly optimized for managing quantitative future and past metric temporal operators, typically found in properties of hard real time systems. The encoding is simple and intuitive in principle, but it is made more complex by the presence, typical of the Bounded Model Checking technique, of backward and forward loops used to represent an ultimately periodic infinite domain by a finite structure. We report and comment on the new encoding technique and on an extensive set of experiments carried out to assess its feasibility and effectiveness

    Bounded model checking of temporal formulas with alloy

    Get PDF
    Alloy is formal modeling language based on first-order relational logic, with no specific support for specifying reactive systems. We propose the usage of temporal logic to specify such systems, and show how bounded model checking can be performed with the Alloy Analyzer

    Towards Personalized Prostate Cancer Therapy Using Delta-Reachability Analysis

    Full text link
    Recent clinical studies suggest that the efficacy of hormone therapy for prostate cancer depends on the characteristics of individual patients. In this paper, we develop a computational framework for identifying patient-specific androgen ablation therapy schedules for postponing the potential cancer relapse. We model the population dynamics of heterogeneous prostate cancer cells in response to androgen suppression as a nonlinear hybrid automaton. We estimate personalized kinetic parameters to characterize patients and employ δ\delta-reachability analysis to predict patient-specific therapeutic strategies. The results show that our methods are promising and may lead to a prognostic tool for personalized cancer therapy.Comment: HSCC 201

    Validating the hybrid ERTMS/ETCS level 3 concept with electrum

    Get PDF
    This paper reports on the development of a formal model for the Hybrid ERTMS/ETCS Level 3 concept in Electrum, a lightweight formal specification language that extends Alloy with mutable relations and temporal logic operators. We show how Electrum and its Analyzer can be used to perform scenario exploration to validate this model, namely to check that all the example operational scenarios described in the reference document are admissible, and to reason about expected safety properties, which can be easily specified and model checked for arbitrary track configurations. The Analyzer depicts scenarios (and counter-examples) in a graphical notation that is logic-agnostic, making them understandable for stakeholders without expertise in formal specification.- Fundação para a Ciência e a Tecnologia(POCI-01-0145-FEDER-016826); ERDF - European Regional Development Fund through the Operational Programme for Competitiveness and Internationalisation - COMPETE 2020 and by National Funds through the Portuguese funding agenc

    European Preferences for Beef Steak Attributes

    Get PDF
    A choice experiment is used to evaluate how consumers in London, Frankfurt, and Paris value beef steaks with attributes such as: "hormone-free," "GM-free," farm-specific source verification, and domestic origin. The effect of various consumer characteristics on steak selection is also evaluated. Results suggest that European consumers are significantly heterogeneous in their preferences for beef steak attributes. French and German consumers have a higher willingness to pay to avoid genetically modified feed use than British consumers, while German and British consumers would pay more for growth hormone-free beef. French and German consumers are willing to pay for farm-specific source verification.beef, choice experiment, country of origin, genetically modified, hormones, preference heterogeneity, random parameters, source verification, Consumer/Household Economics,

    The Potential of Restarts for ProbSAT

    Full text link
    This work analyses the potential of restarts for probSAT, a quite successful algorithm for k-SAT, by estimating its runtime distributions on random 3-SAT instances that are close to the phase transition. We estimate an optimal restart time from empirical data, reaching a potential speedup factor of 1.39. Calculating restart times from fitted probability distributions reduces this factor to a maximum of 1.30. A spin-off result is that the Weibull distribution approximates the runtime distribution for over 93% of the used instances well. A machine learning pipeline is presented to compute a restart time for a fixed-cutoff strategy to exploit this potential. The main components of the pipeline are a random forest for determining the distribution type and a neural network for the distribution's parameters. ProbSAT performs statistically significantly better than Luby's restart strategy and the policy without restarts when using the presented approach. The structure is particularly advantageous on hard problems.Comment: Eurocast 201

    Automated Benchmarking of Incremental SAT and QBF Solvers

    Full text link
    Incremental SAT and QBF solving potentially yields improvements when sequences of related formulas are solved. An incremental application is usually tailored towards some specific solver and decomposes a problem into incremental solver calls. This hinders the independent comparison of different solvers, particularly when the application program is not available. As a remedy, we present an approach to automated benchmarking of incremental SAT and QBF solvers. Given a collection of formulas in (Q)DIMACS format generated incrementally by an application program, our approach automatically translates the formulas into instructions to import and solve a formula by an incremental SAT/QBF solver. The result of the translation is a program which replays the incremental solver calls and thus allows to evaluate incremental solvers independently from the application program. We illustrate our approach by different hardware verification problems for SAT and QBF solvers.Comment: camera-ready version (8 pages + 2 pages appendix), to appear in the proceedings of the 20th International Conference on Logic for Programming, Artificial Intelligence and Reasoning (LPAR), LNCS, Springer, 201

    On QBF Proofs and Preprocessing

    Full text link
    QBFs (quantified boolean formulas), which are a superset of propositional formulas, provide a canonical representation for PSPACE problems. To overcome the inherent complexity of QBF, significant effort has been invested in developing QBF solvers as well as the underlying proof systems. At the same time, formula preprocessing is crucial for the application of QBF solvers. This paper focuses on a missing link in currently-available technology: How to obtain a certificate (e.g. proof) for a formula that had been preprocessed before it was given to a solver? The paper targets a suite of commonly-used preprocessing techniques and shows how to reconstruct certificates for them. On the negative side, the paper discusses certain limitations of the currently-used proof systems in the light of preprocessing. The presented techniques were implemented and evaluated in the state-of-the-art QBF preprocessor bloqqer.Comment: LPAR 201
    corecore